Lindane Education And Research Network
Home Alert News Archive Resources Contact Donate Search

"The future will depend on our wisdom not to replace one poison with another."
National Pediculosis Association®, Inc.


First results of a pilot decontamination in a PCP polluted building by means of a humidity controlled thermal process

Abridged translation. The original paper was written in German and contains additional information.

W. von Rotberg1, M. Gagelmann2, H. Piening3, R.W. Sieke4, S. Michaelis5, N. Wilke1 and K.Roux6

1Thermo Lignum GmbH, Landhausstrasse 17, 69115 Heidelberg, Germany;
2Öko-Consult Dr.rer.nat.habil. M Gagelmann GmbH, Wormserstrasse 9, 69198 Schriesheim, Germany;
3Bayrische Verwaltung der Schlösser und Gärten, Residenzstrasse 1, 80333 München, Germany;
4Technologie Consulting GmbH, Echterngrund 19, 30657 Hanover;
5Thermo Lignum Buehner & Co. GmbH, Paul-Lincke-Ufer 42-43, 10999 Berlin;
6Thermo Lignum UK Limited, 19 Grand Union Centre, London W10 5AS, UK

Introduction

Up till the early Eighties preventative treatments of construction and ancillary materials even in interiors and of wooden and textile objects as well as those made of, e.g., paper and leather as a precaution against insect and fungal attack used to be carried out using pentachlorphenol (PCP) as active ingredient. PCP evaporation from such large material surfaces treated in such a manner can reach levels of concentration even today which are still hazardous to human health (Gagelmann and Fonfara, 1992).

It is possible to record even today very high levels of interior contamination from pentachlorphenol (PCP) particularly in buildings of historical significance with many wooden interior fittings. There are as yet no appropriate methods to decontaminate protected historic buildings or objects. All processes in use hitherto, such as the steam-tight panelling, the removal or encasement and surface coating of contaminated construction elements cannot be justified from a curatorial point of view. It was therefore the aim of the investigation to test the application of a new humidity-controlled thermal process with which it is possible to evaporate out the volatile wood preserver ingredients contained in the surfaces to be treated so as to arrive at a distinct improvement of interior air quality.

The humidity-controlled thermal treatment processed developed and patented by Thermo Lignum has been successfully used for several years for the purpose of disinfestation from insect pests in items made of organic materials, notably works of art, museum exhibits, antiques, libraries and archives. Another application is the treatment of mould on objects and dry rot in buildings.

In an earlier pilot project it was possible to demonstrate the beneficial effect of the Thermo Lignum method when an small reconstructed cottage was treated against wood-boring infestation in its structural timbers. The building was heated to a core temperature of 55 °C in the same way as described above. This particular infestation treatment was completed in under 24 hours due to its size and the fact that a holding phase of one to two hours is sufficient to achieve a 100% kill rate of all forms of infestation. This was the first time this pioneering treatment involving combined heating and humidity control had been carried out on a whole building (Zeuner, 1997).

Materials and Methods

After preliminary tests on a laboratory scale the applicability in principle of a humidity-controlled thermal process for the detoxification of contaminated interiors could be confirmed. The process consists of the heating of a closed room whilst simultaneously controlling its humidification. The room to be treated is sealed off tightly and is slowly heated to 60°C by inducing hot air from a closed-circuit heating system developed and patented by Thermo Lignum GmbH,Germany, which ensures an even air distribution throughout the room. (The maximum heating capacity/hour of the modular system is 8,000 m3 thus making large-scale decontamination possible). Structural damage due to drying out is pre-empted by keeping the relative humidity (50%) in the induction air constant by means of a computer-assisted control unit. Room temperature increases gradually guided by the wood and masonry core temperatures (Nicholson and von Rotberg, 1996). After reaching the target temperature there follows a holding phase lasting several days up to several weeks during which time the contaminants are mobilised.

At the same time the mobilised contaminants are broken down by means of oxidation in the sealed reaction compartment of a separate parallel air cycle. The reactive oxidation product is generated for this purpose in an ozone generator in which oxygen molecules are converted into radicals which form ozone structures in high levels of concentration with half lives between 70 msec and 70 sec.

To verify the success of the decontamination treatment air measurements were taken after a 14 to 16 hour long closing of the room and at temperature levels typical for residential occupation. Air sampling (2-3 m3; 2 m3/hour) was done on fibre glass filters (dust phase) and polyurethane foams (gaseous phase) (Leitfaden 1994; VDI 4300, 1994). Following specific extraction with toluene analysis gas chromatography mass spectrometry was carried out.

Results and Discussion

In the first phase of the pilot decontamination a severely PCP contaminated room of an approximate volume of 72.5 m3 (room I) with a room contamination load ratio of approx. 1.2 m-1 (contaminated wood surface/ room volume) was subjected to a ten day long decontamination treatment. The emission into the ambient air emanated from structural timbers (half-timbering) and decorative wood (ceiling beams, wall panelling, etc.) with surface contamination readings ranging from 360 to 4000 mg PCP/kg. Depending on the point of measurement (window areas with lesser and rear wall area with higher timber content) the PCP concentration in the ambient air ranged from 1112 to 1186 ng/m3 (22.7 °C) with 792-759 ng/m3 apportioned to the dust phases. Similarly, for Lindane the ambient air measurements ranged from 220-223 ng/m3 (gaseous and dust phases).

Measurements after the decontamination treatment (23.8 °C) resulted in significantly lower PCP contamination of the ambient air of 182-367 ng/m3 (71-143 ng PCP/m3 in the dust phase). A similar reduction of the Lindane contamination of the ambient air could also be recorded (143-150 ng/m3).

As a consequence of these results the scope of the decontamination was enlarged to include four other rooms. Room I was included again in the second phase (approx. 205 m3) of the pilot decontamination and the holding phase was extended to 14 days. A compilation of the test results is given in Table 1.

http://palimpsest.stanford.edu/byauth/gagelmann/gagelmann.html

 

 

Lindane Education And Research Network is a project of the National Pediculosis Association® (NPA)
The NPA, a non-profit tax exempt, 501(c)3, organization, receives no government or industry funding
and provides this website with proceeds from our educational resources and the LiceMeister® Comb.
Please read our disclaimer and privacy policy. Report any problems with this site to the webmaster.